ORIGINAL PAPER

A novel dextransucrase is produced by *Leuconostoc citreum* strain B/110-1-2: an isolate used for the industrial production of dextran and dextran derivatives

Reinaldo Fraga Vidal · Aidín Martínez · Claire Moulis · Pierre Escalier · Sandrine Morel · Magali Remaud-Simeon · Pierre Monsan

Received: 24 August 2010/Accepted: 27 December 2010/Published online: 13 January 2011 © Society for Industrial Microbiology 2011

Abstract The industrial *Leuconostoc* strain B/110-1-2 producing dextran and dextran derivatives was taxonomically identified by 16S rRNA as *L. citreum*. Its dextransucrase enzymes were characterized according to their cellular location and reaction specificity. In the presence of sucrose, the strain B/110-1-2 produced two cell-associated dextransucrases (31.54% of the total glucosyltransferase activity) with molecular weights of 160 and 240 kDa and a soluble dextransucrase (68.46%) at 160–180 kDa. Two open reading frames (ORF) coding for *L. citreum* strain B/110-1-2 dextransucrases were identified. One of them shared a 52% identity with the alternansucrase ASR of *L. citreum* NRRL B-1355 and with a putative annotated

C. Moulis \cdot P. Escalier \cdot S. Morel \cdot M. Remaud-Simeon \cdot P. Monsan

Université de Toulouse, INSA, UPS, INP, LISBP, 135 Avenue de Rangueil, 31077 Toulouse, France

C. Moulis \cdot P. Escalier \cdot S. Morel \cdot M. Remaud-Simeon \cdot P. Monsan

INRA, UMR792 Ingénierie des Systèmes Biologiques et des Procédés, 31400 Toulouse, France

C. Moulis · P. Escalier · S. Morel · M. Remaud-Simeon · P. Monsan CNRS, UMR5504, 31400 Toulouse, France

P. Monsan (🖂)

Laboratoire d'Ingénierie des Systèmes Biologiques et des Procédés, UMR CNRS 5504, UMR INRA 792, DGBA INSA, 135, Avenue de Rangueil, 31077 Toulouse Cedex 04, France e-mail: Pierre.Monsan@insa-toulouse.fr alternansucrase sequence found in the genome of *L. citreum* KM20. The structural analysis (HPAEC-PAD, HPSEC, and ¹³C-NMR) of the polymer and oligodextrans produced by the B/110-1-2 dextransucrases suggest this novel glucansucrase has specificity similar to a dextransucrase but not to an alternansucrase, producing a soluble linear dextran with glucose molecules linked mainly in α -1,6 and α -1,3 with α -1,4 branches. These results enhance the understanding of this industrially significant strain and will aid in distinguishing between physiologically similar *Leuconostoc* spp. strains.

Keywords Dextransucrases · Dextran · Gluco-oligosaccharides · *Leuconostoc*

Introduction

Dextransucrases (EC 2.4.1.5), which belong to Family 70 of the glycoside hydrolases [16], are cell-associated or soluble extracellular enzymes produced by the soil bacteria belonging to the *Leuconostoc* genus [37]. They catalyze the synthesis of high-molecular-weight glucans (D-glucose polymers) from sucrose. If efficient acceptors like maltose or isomaltose are added to the reaction medium, dextransucrases catalyze the synthesis of low-molecular-weight oligosaccharides and, to a minor extent, high-molecularweight glucan polymers [19]. Different kinds of glucans with different sizes and structures, depending on the dextransucrase-producing strain, are synthesized [35]. Dextransucrases from Leuconostoc mesenteroides have been widely used in the pharmaceutical and alimentary industries since the last century. Dextran produced by L. mesenteroides NRRL B-512F (ATCC 10830A) was one of the first biopolymers to be produced on an industrial

R. Fraga Vidal · A. Martínez Cuban Research Institute on Sugarcane By-Products (ICIDCA), PO Box 4026 CH-10, 11000 Havana, Cuba e-mail: reynaldo.fraga@icidca.edu.cu; reynaldofraga@yahoo.com

scale [15], finding several applications in medicine, separation technology, and biotechnology [14, 40]. *Leuconostoc* spp. strains are applied in fermentative processes to produce polymers of glucose (iron dextran, and glucooligosaccharides) [32]. Oligosaccharides produced by *L. mesenteroides* NRRL B-1299 with one or more D-glucopyranosyl units linked through α (1-2) glucosidic bonds [31] are highly resistant to attack by digestive enzymes [11] and are used as prebiotics in cosmeceutical products and human nutritional applications.

The Leuconostoc sp. strain B/110-1-2 was isolated from sugarcane juice and has been used for dextran production from sugarcane molasses in a large-scale plant, obtaining up to 1 ton per day of technical-grade dextran. There are basically three stages in dextran production: first, the propagation of the Leuconostoc sp. from a pure strain in the laboratory and its further propagation in the plant, until sufficient cells have been obtained for a high concentration of the generated dextransucrase enzyme. The culture supernatant free of cells or the whole culture (optional) is used for the enzymatic synthesis of dextran in a sucrose solution that takes place in the second stage. The solution also contains yeast extract, a source of phosphate as a buffer, traces of salts of some metals such as Mg, Mn, Fe, and sodium hydroxide to neutralize the excess acid formed during fermentation. The third stage consists of the dextran recovery through precipitation with ethyl alcohol, washing, reprecipitation, dissolving, drying, grinding, and packaging. [4]. Recently, the technical-grade dextran polymer produced by the above-mentioned procedure using the dextransucrase present in the culture supernatant of the strain B/110-1-2 has been submitted to a physical and chemical characterization using infrared spectroscopy (IR), ¹H and ¹³C NMR spectroscopy and compared with that of a commercial native dextran 512F obtained from Sigma-Aldrich Corp. The spectra obtained for both native dextrans were very similar. This result suggests both native dextrans have a similar structure [7, 8]. Strain B/110-1-2 has also been applied in the production of irondextran at the pilot-plant scale. A new process has been developed at ICIDCA that substitutes traditional synthesis by previous formation of β -FeOOH. This intermediate is then purified through liquid-solid separation in a decanting centrifuge. Production of 5,000-Da dextran is a threestep process: synthesis and purification of β -FeOOH followed by production of injectable iron dextran [21]. The dextransucrase present in the culture supernatant of the strain B/110-1-2 has also been used for the development of controlled-release solid dosage forms (soluble drugs) [7]. In the present study, the B/110-1-2 strain was taxonomically identified by 16S rRNA analysis. Activity, cellular localization, molecular weight, and reaction specificity of its dextransucrase enzymes were determined. The detection of a novel dextran polymer and dextransucrase ORF is discussed.

Materials and methods

Bacterial strains and culture media

The Leuconostoc sp. strain B/110-1-2 was obtained from the Cuban Research Institute on Sugarcane by-Products (ICIDCA) culture collection. It was isolated from sugarcane juice (A. Martínez pers. comm.). Stock cultures were maintained at -80°C in 15% (v/v) glycerol. Erlenmeyer flask cultures were grown in a rotary shaker at 30°C, 175 cycles min^{-1} in standard medium (20 g/l sucrose, 20 g/l potassium hydrogen phosphate, 20 g/l yeast extract, 0.2 g/l MgSO₄ 7H₂O, 0.01 g/l MnSO₄ H₂O, 0.01 g/l NaCl, 0.02 g/l CaCl₂, 0.01 g/l FeSO₄ 7H₂O) with an adjusted pH of 6.9. Cultures were grown until the pH dropped to around 5.0-4.8. Glucose instead of sucrose was added in the standard medium for chromosomal DNA purification purposes in order to eliminate the interference in the purification procedure of the dextrans produced by the strain B/110-1-2 in the presence of sucrose.

Preparation of fractions containing dextransucrase enzymes: enzyme activity assays

The supernatant and cellular fractions of the B/110-1-2 cultures contain soluble and insoluble dextransucrase enzymes, respectively. They were separated by centrifugation at $10,000 \times g$ and 4°C for 15 min. They were collected from cultures grown in 50 ml of standard medium supplemented with 40 g/l sucrose. The cellular fractions were suspended in 100 ml of 20 mM (pH 5.4) sodium acetate, 2 mM CaCl₂, and NaNO₃ 0.1% (W/V). Both fractions were kept at -20° C until they were analyzed.

Enzyme reactions were assayed under standard conditions at 30°C, in 20 mM sodium acetate buffer (pH 5.4), 0.05 g/l CaCl₂, 1 g/l NaNO₃, and 100 g/l sucrose. The dextransucrase activity was determined by measuring the release of reducing sugars with the dinitrosalicylic acid method [41]. One U is defined as the amount of enzyme that catalyzes the formation of 1 μ mol/min fructose under the assay conditions.

Malto-oligosaccharides and dextran production

Acceptor reactions were carried out at 30°C for 24 h, in 20 mM sodium acetate buffer (pH 5.4), 0.05 g/l CaCl₂, 1 g/l NaNO₃, 200 g/l sucrose, 50 g/l maltose, and 0.5 U/ml dextransucrase. The acceptor reaction products synthesized by the dextransucrase DSR-S purified from *L. mesenteroides*

NRRL-B-512F (ATCC 10830A) supernatant were used as controls for comparative purposes. The synthesis of dextran polymer was carried out under the same conditions as above except that maltose was not added to the reaction medium.

High-performance size exclusion chromatography (HPSEC)

Glucan molecular weight distributions were determined by HPSEC. For dextran analyses, two Shodex OH-Pack SB-805 and SB-802.5 columns were maintained in series, using an eluent containing 0.45 M of NaNO₃ and 1% of ethylene glycol at a flow rate of 0.3 ml/min. Columns and guard columns were maintained at 70°C, and samples were filtered through a 0.45- μ m-pore-size filter (Sartorius) before injection [25]. The reaction was stopped after 24 h by heating 5 min at 95°C in a boiling water bath. Calibration standards of commercial dextrans of 2,000, 530, 70, and 10 kDa were used (Sigma-Aldrich).

¹³C-NMR analyses of dextran polymers

All NMR spectra were recorded on an Advance 500-MHz spectrometer (Bruker) using a 5-mm z-gradient TBI probe. The data were acquired and processed using XWINNMR 3.5 software. The temperature was 343 K. Quantitative ¹³C-NMR were recorded as previously described [12, 13] using an inverse gated sequence taken from the Bruker pulse sequence library, and using a 90° pulse, 25,000-Hz sweep width, 2.5-s relaxation delay, and 0.63-s acquisition time. A total of 30,000 scans were recorded. Proton spectra were acquired by using a 30° pulse; 12,500-Hz sweep width, 2.5-s relaxation delay, and 2.0-s acquisition time. A total of four or 16 scans were recorded. Signal assignments were made by the comparison of spectra from products and acceptors of the branching reaction.

SDS-PAGE and zymograms

Protein electrophoresis under denaturing conditions (SDS-PAGE) was performed with the XCell *SureLock*TM Mini-Cell system, with NOVEX Tris–Acetate gels of 1.5-mm thickness, NuPAGE[®] anti-oxidant and NuPAGE[®] Tris–Acetate SDS Running Buffer (for Tris–Acetate gels) from Invitrogen. The NuPAGE[®] Sample Reducing Agent (3 μ) and NuPAGE[®]LDS Sample Buffer (4×) sample buffer (7.5 μ) were mixed with 20 μ l of sample and heated at 70°C for 10 min prior to being loaded onto gels. Samples containing suspended cells were centrifuged at 10,000 × g in a micro-centrifuge before being applied to the gels. Approximately 2 mU of enzyme, as measured by

the DNS assay, was loaded onto the gels and electrophoresis was carried out for 1 h at 150 V. The gels were then stained for glucansucrase activity in situ by the procedure of Miller and Robyt [22]. Bio-Rad protein standards (Precision Plus ProteinTM All Blue Standard, Bio-Rad, Inc.) were included in all electrophoresis runs.

DNA extraction and purification

Chromosomal DNA of B/110-1-2 strain was purified with the Blood and Cell Culture DNA Maxi kit (Qiagen). Agarose gel electrophoresis was performed by standard procedures [34]. PCR amplification products and gel extraction were performed using QIAquick kit (Qiagen).

PCR amplification of 16S rDNA operon

Primers designed to amplify the complete sequence of the 16S rDNA operon were designated as **R16S-1** (5'-AGAG TTGACATGCCTCTCAG-3') and **R16S-2** (5'-TACGGTT ACCTTGTTACGACTT-3'). Amplicons were synthesized with a Perkin Elmer Gene Amp PCR System 2400 thermocycler. The reaction was carried out in a total volume of 20 μ l containing 2.5 U *Taq* Polymerase (New England Biolabs), 50 ng chromosomal DNA of the strain B/110-1-2, 10 μ M of each primer, 200 μ M of each dNTP, and 2 μ l of *Taq* Polymerase Buffer 10× supplemented with 15 mM MgCl₂. The following program was applied: 30 cycles at 94°C for 30 s, 50°C for 1 min and 30 s, 72°C for 2 min, and a final additional extension step of 72°C for 10 min. The amplicon was cloned in the T-vector pUCmT (TaKaRa Biotechnology).

PCR amplification of putative dextransucrase encoding genes

Primers were designed based on the sequence of asr, dsrS, and *dsrE* genes from GenBankTM (accession numbers AJ250173, I09598 and AJ430204, respectively). DNA fragments were generated by LA PCR (Long and Accurate PCR) using the Expand High Fidelity PCR System (Roche Applied Science) with a Perkin Elmer Gene Amp PCR System 2400 thermocycler and 50 ng of genomic DNA, 10 μ M of forward and reverse primers (Table 1), 200 μ M of each dNTP, and 5 µl of Expand High Fidelity buffer, $10 \times$ conc. with 15 mM MgCl₂ in a total reaction volume of 50 µl. The thermal cycling was 1 cycle at 94°C for 2 min, ten cycles of 94°C for 15 s, 50°C for 30 s, 68°C for 10 min, 20 cycles of 94°C for 15 s, 50°C for 30 s, 68°C for 10 min plus 5 s for each cycle, and 1 cycle 68°C for 15 min. The amplicons were cloned in the vector pGEM3Zf(+) (Promega).

J Ind Microbiol Biotechnol (2011) 38:1499-1506

Table 1 Oligoprimers used for LA PCR amplification

Designation	Description	5'-3' Sequence ^a
asr-dir-PS	nt 195-220	<u>CATG</u> AACAACAAGAAACAGTTACCCG
asr-inv-PS	nt 6335-6365	AGCTTGCAAAGCACGCTTATCAA7CCATAGC
dsrS-dir-PS	nt 230-263	ATGCCATTTACAGAAAAAGTAATGCGGAAAAAGC
dsrS-inv-PS	nt 4809-4780	GTATGCTGACACAGCATTTCCATTATTATCAAATTGG
dsrE-dir-PS	nt 567-593	ATGAGAGACATGAGGGTAATTTGTGAC
dsrE-inv-PS	nt 9070-9045	AATTTGAGGTAATGTTGATTTATCACC

ATG and AAT in italic type represent, respectively, the start and stop codons. Nucleotides in *bold type* and *underlined* represent mismatches with the sequence bearing *asr* in order to transform the start codon in a *NcoI* cleavage site

nt nucleotides

^a Primer sequences are designed from the non-coding strand (-dir-PS) and from the complementary strand (-inv-PS)

DNA sequencing and sequence analysis

Amplicons were sequenced in both directions by Genome Express, France. Nucleotide sequence analysis was performed with Vector NTI 10.0 software (Invitrogen). Sequence alignment and phylogeny estimation were done using the program MAFFT, version 6.717b (available at http://align.bmr.kyushu-u.ac.jp/mafft/software). The sequence alignment was performed by using the L-INS-I method and the default parameters of the program. The tree was constructed using the neighbor-joining method with bootstrap values for 500 replicates.

ClustalW2 [20] and BLAST [2] Internet programs were used to perform the sequence alignments of the dextransucrase open reading frame (ORF). ClustalW2 is available at http://www.ebi.ac.uk/Tools/clustalw2/index.html.

Results and discussion

Taxonomic classification of L. citreum strain B/110-1-2

The strain B/110-1-2 is a microaerophilic, nonmotile, nonspore-forming Gram-positive bacterium. Cells are ovoid and arranged in chains of 3–4 cocci. Colonies on sucrose solid media are viscous. This strain was primarily identified as *L. mesenteroides* on the basis of its morphological properties and by the API 50-CH test (bioMérieux, Marcy l'Etoile, France). However, sequence analysis of the 16S rDNA operon (GenBank accession number FJ716698) showed that strain B/110-1-2 shares a 99% identity with the *L. citreum* strains included in the analysis (Fig. 1). It appears that taxonomy based only on phenotypic or biochemical tests is not enough to detect differences between *L. mesenteroides* and *L. citreum* because several former *L. mesenteroides* strains [CW28, NRRL B-1355, NRRL B-742 (ATCC 13145)] have been reclassified as *L. citreum*

based on the sequence analysis of 16S rDNA operon [10, 28, 29].

Dextransucrase activity in cellular and supernatant fractions of *L. citreum* strain B/110-1-2

The strain B/110-1-2 produces both cell-associated and soluble dextransucrase enzymes. Cell-associated (insoluble) dextransucrases represent 31.54% of the total glucosyltransferase activity (Fig. 2IIa). Higher levels (68.46%) of soluble dextransucrase activity detected in the culture supernatant are in agreement with the extracellular localization of most dextransucrases produced by lactic-acid bacteria belonging to the genus Leuconostoc [24, 37]. In L. mesenteroides NRRL B-1299 (ATCC 11449) an insoluble form of dextransucrase is responsible for the 60-95% of the whole glucosyltransferase (dextransucrase) activity produced [18, 33, 39]. The L. citreum NRRL B-1355 strain produces an alternansucrase (EC 2.4.140), that is predominantly cell-associated and it represents less than 10% of the whole glucosyltransferase activity in the supernatant fraction of active young cultures [45]. All of this is supported by the fact that the N-terminal domain from almost all sequenced dextransucrase encoding genes is preceded by a well-conserved signal peptide, leading to secretion of the enzymes to the extracellular medium [42].

The dextransucrase zymograms of cell and supernatant fractions of B/110-1-2 show this strain produces four dextransucrases: three cell-associated and a soluble enzyme. The soluble form and one of the cell-associated forms share an approximate molecular weight of 160–180 kDa (Fig. 2II-b, II-b'). Enzymes with similar sizes have been found in several *L. mesenteroides* strains, for example: in *L. mesenteroides* NRRL B-512F the principal dextransucrase produced is a protein of 170 kDa (DSR-S) that corresponds to the product of the gene (*dsrS*) [43], DSR-B in *L. mesenteroides* NRRL B-1299 [23],

Fig. 2 Dextransucrase production and detection of dextransucrase amplicons in *L. citreum* strain B/110-1-2. Quantification of dextransucrase activity (a) and zymograms (b) of cellular (Cell) and supernatant (SN) fraction, 1b: protein marker (Bio-Rad). c DNA electrophoresis of 8.5 kb (2c) and 5.8 kb (3c) amplicons encoding for dextransucrase enzymes amplified by LA PCR with primers dsrE-dir-PS, dsrE-inv-PS and asr-dir-PS, asr-inv-PS, respectively. 1c: 1-kb DNA Step Ladder (Promega)

DSR-D in *L. mesenteroides* Lcc4 [27], DSR-P in *L. mesenteroides* IBT-PQ [9, 30], DsrX in *L. mesenteroides* CGMCC [44], and dexYG in *L. mesenteroides* 0323 [46].

nansucrase) [3]. Kim and Robyt [17] reported an activity band of 240 kDa in the constitutive mutant *L. citreum* B-742CB. Nevertheless, Chellapandian et al. [9] suggested that the 240 kDa protein may represent a multimer of dextransucrase subunits. It is possible that the 220–240 kDa cell-associated dextransucrase from *L. citreum* B/110-1-2 described in this study is a similar multimer since no alternansucrase activity was detected in this strain.

220–240 kDa (Fig. 2II-b). A similar molecular weight has

been found in the L. citreum NRRL B-1355 (ASR alter-

Amplification of DNA fragments encoding for dextransucrase enzymes

Two amplicons could be detected from chromosomal DNA of *L. citreum* B/110-1-2 (Fig. 2II-c, lines 2 and 3). Analysis of the partial sequence of the 8.5 kb amplicon, amplified with the primers dsrE-dir-PS and dsrE-inv-PS (Fig. 2II-c, line 2) revealed that it shares 98% identity with the sequence of dextransucrase DSR-E from the strain *L. mesenteroides* NRRL B-1299 [5] and with a putative

dextransucrase encoding sequence found in the genome of *L. citreum* KM20. A dextransucrase of molecular mass of approximately 313 kDa (like DSR-E) was detected with a very low expression level in zymograms (cellular fraction) of the strain *L. citreum* B/110-1-2 (Fig. 2II-b, line 2), although it could not be detected by nuclear magnetic resonance (¹³C-NMR) spectroscopy dextrans with the linkage pattern like the ones produced by DSR-E enzyme (Fig. 4).

The sequence analysis of the approximately 5.8-kb amplicon from chromosomal DNA of B/110-1-2, obtained with the primers asr-dir-PS and asr-inv-PS (Fig. 2II-c, line 3) permitted the identification of a novel dextransucrase open reading frame (ORF) (GenBank accession number: FJ844434), sharing a 52% identity with the ASR of *L. citreum* NRRL B-1355 and with a putative alternansucrase sequence in the genome of *L. citreum* KM20.

Analysis of oligosaccharides and dextran produced by *L. citreum* B/110-1-2 dextransucrases

The acceptor reaction products formed by supernatant and cell-associated dextransucrases of *L. citreum* B/110-1-2 were compared with those produced by dextransucrase DSR-S, from *L. mesenteroides* NRRL-B-512F. In the presence of maltose as the acceptor molecule, the B/110-1-2 soluble dextransucrase synthesizes a series of isomal-todextrin analogs very similar to the ones produced by the DSR-S. These products range from the trisaccharide

panose to homologous saccharides harboring 12 units of glucose [10]. The specificity of the soluble dextransucrase of B/110-1-2 strain (similar to one of DSR-S) was confirmed by ¹³C-NMR analysis of the high-molecular-weight (HMW) dextran produced by the supernatant fraction, which was identical to the dextran produced by the DSR-S enzyme (data not shown).

The use of high-performance anionic exchange chromatography (HPAEC-PAD) enabled the detection of the B/110-1-2 cell-associated dextransucrases which synthesized malto-oligosaccharides with retention times very similar to the ones produced by the DRS-S as well, except that two additional peaks clearly appeared immediately after the products with degrees of polymerization (DP) of seven and eight, respectively (data not shown). High-performance size-exclusion chromatography profiles (HPSEC) of the products from the polymerization reaction carried out by the cell-associated dextransucrases of the L. citreum strain B/110-1-2 showed that part of the oligosaccharides were not elongated and were accumulated in the reaction medium (DP < 8) whereas the others were elongated until formation of a HMW dextran polymer (2×10^6 Da) occurred (Fig. 3). This is a very similar pattern to that described for the alternansucrase ASR from the L. citreum strain NRRL-B-1355 [26]. ¹³C-NMR analysis (Fig. 4) of this dextran (produced by the cell-associated dextransucrases of the L. citreum strain B/110-1-2) showed a case of intermediate branching, represented by three residues of D-glucosyl joined by α -D-(1,6) links, and one 1,4,6-tri-O-substituted by

Fig. 3 HPSEC profiles of the products synthesized by *L. citreum* B/110-1-2 cellassociated dextransucrases during the polymerization reaction from sucrose 290, 435, and 580 mM, respectively. *HMW* high-molecular-weight polymers, *IMW* products of intermediate molecular weight, *DP2* sucrose, *DP1* monosaccharides

Fig. 4 13 C NMR spectra of glucan polymers produced by *L. citreum* B/110-1-2 cell-associated dextransucrases (*A*). Dextran T-70 produced by *L. mesenteroides* NRRL B-512F DSR-S dextransucrase (*B*)

a non-reducing D-glucosyl group. The two additional picks, minor picks which appear in the region of 60-70 ppm, are due to the sugars in the branching and the non-reducing ends. The anomeric region also shows two minor picks related to the sugars of the branching and the non-reducing end terminal. The pick shown in the region 75-85 ppm (79.54) is assumed to be the C-4 atom involved in the branching. A similar ¹³C-NMR profile was previously found in the dextran present in fraction L of Streptobacterium dextranicum NRRL B-1254 [36], and in the fraction L of L. citreum NRRL-B-742 (ATCC 13146) [38]. On the other hand, Brossard [6] working on the structural determination of the dextran produced by the whole culture (supernatant and cell fraction together) of the strain B/110-1-2, found this dextran formed by $\alpha(1-6)$ (93%), $\alpha(1-3)$ (6%) links and $\alpha(1-4)$ (1%) branches. According to the results of the present study, it is concluded that this type of dextran polymer is produced by the cell-associated dextransucrases of the L. citreum strain B/110-1-2, or at least by one of them. Further characterization of the novel dextransucrase open reading frame (ORF) identified in this study will be crucial for the proper identification of the dextransucrase responsible for the synthesis of the above-mentioned polymer.

The data obtained in this study enhances the understanding of this industrially significant strain and will aid in distinguishing between physiologically similar *Leuconostoc* strains. As the cell-associated dextransucrases from *L. citreum* B/110-1-2 are able to produce branched oligosaccharides it may be easily incorporated as an immobilized biocatalyst for linear α -1,6 and α -1,4 branched isomaltooligosaccharide production. Such oligosaccharides have potential applications as prebiotics, i.e., non-digestible carbohydrates, which are specifically metabolized by beneficial strains of the human or animal intestinal microbiota.

Acknowledgments R. Fraga holds a contract as Research Associated from INRA, Toulouse. We express our gratitude to Elisse Champion and Richard Guyton by their technical support and advice for the HPAEC-PAD and HPSEC analysis, respectively. We also thank Dr. Joan Combie for the style correction of the manuscript.

References

- Ah-Rum Y, Lee S, Jang M, Park J, Eom H, Soo Han N, Kim T (2009) Cloning of dextransucrase gene from *Leuconostoc citreum* HJ-P4 and its high level expression in *E. coli* by low temperature induction. J Microbiol Biotechnol 19:829–835
- Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402
- Arguello-Morales M, Remaud-Simeon M, Pizzut S, Sarcabal P, Willemot RM, Monsan P (2000) Sequence analysis of the gene encoding alternansucrase, a sucrose glucosyltransferase from *Leuconostoc mesenteroides* NRRL B-1355. FEMS Microbiol Lett 182:81–85
- Bell A, Santiesteban CM (2000) Dextran. In: Gálvez L, Reselló S, Cabello A, Villamil, G, García A, Martín A, Costales R (eds) Handbook of sugar cane derivatives, 3rd edn, Chap 5.1, pp 323– 326
- 5. Bozonnet S, Dols-Laffargue M, Fabre E, Pizzut S, Remaud-Simeon M, Monsan P, Willemot RM (2002) Molecular characterization of DSR-E, an α -1, 2 linkage-synthesizing dextransucrase with two catalytic domains. J Bacteriol 184:5753–5761
- Brossard L (1968) Estudio de la dextrana Cubana. Revista ICIDCA Havana Cuba 2(1):41–47
- Castellanos E, Iraizoz A, Bataille B, Pedráz JL, Heinamaki J (2006) Development and optimization of a novel sustainedrelease dextran tablet formulation for propranolol hydrochloride. Int J Pharm 317:32–39
- Castellanos E, Iraizoz A, Abdelsam E, Durand D, Delarbre JL, Bataille B (2008) A sugar cane native dextran as an innovative functional excipient for the development of pharmaceutical tablets. EJPB 68:319–329
- Chellapandian M, Larios C, Sánchez-González M, López-Munguía A (1998) Production and properties of a dextransucrase from *Leuconostoc mesenteroides* IBT-PQ isolated from 'pulque', a traditional Aztec alcoholic beverage. J Ind Microbiol Biotechnol 21:51–56
- Cote LG, Leathers TD (2005) A method for surveying and classifying *Leuconostoc* spp. Glucansucrases according to straindependent acceptor products patterns. J Ind Microbiol Biotechnol 32:53–60
- 11. Djouzi Z, Andrieux C, Pelenc V, Somarriba S, Popot F, Paul F, Monsan P, Szylit O (1995) Degradation and fermentation of α -glucooligosaccharides by bacterial strains from human colon: in vitro and in vivo studies in gnotobiotic rats. J Appl Bacteriol 79:117–127
- Dols M, Remaud-Simeon M, Willemot RM, Vignon M, Monsan P (1998) Characterisation of the different dextransucrase activities excreted in glucose, fructose or sucrose medium by *Leuconostoc mesenteroides* NRRL B-1299. Appl Environ Microbiol 64:1298
- Fabre E, Bozonnet S, Arcache A, Willemot RM, Vignon M, Monsan P, Remaud-Simeon M (2005) Role of the two catalytic domains of DSR-E dextransucrase and their involvement in the formation of highly α-1, 2 branched dextran. J Bacteriol 187:296–303
- 14. Garvie EI (1984) Separation of species of the genus *Leuconostoc* and differentiation of the *Leuconostoc* from other lactic acid bacteria. In: Bergan T (ed) Methods in microbiology, vol 16. Academic Press, London, pp 147–178

- Groenwall AJ, Ingelman BJA (1948) Manufacture of infusion and injection fluids. U.S. Patent 2, pp 437–518
- Henrissat B, Davies G (1997) Structural and sequence based classification of glycoside hydrolases. Curr Opin Struct Biol 7:637–644
- Kim D, Robyt JF (1995) Production, selection and characteristics of mutants of *Leuconostoc mesenteroides* B-742 constitutive for dextransucrases. Enzyme Microbiol Technol 17:689–695
- Kobayashi M, Matsuda K (1974) The dextransucrase isoenzymes of *Leuconostoc mesenteroides* NRRL B-1299. Biochim Biophys Acta 370:441–449
- Koepsell HJ, Tsuchiya HM, Hellman NN, Kazenko A, Hoffman CA, Sharpe ES, Jackson RW (1953) Enzymatic synthesis of dextran. Acceptor specificity and chain initiation. J Biol Chem 200:793–801
- 20. Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R, Thompson JD, Gibson TJ, Higgins DG (2007) Clustal W and Clustal X version 2.0. Bioinformatics 23:2947–2948
- Michelena G, Santiesteban CM (2000) Injectable iron dextran. In: Gálvez L, Reselló S, Cabello A, Villamil, G, García A, Martín A, Costales R (eds) Handbook of sugar cane derivatives, 3rd edn, Chap 5.13, pp 383–385
- 22. Miller AW, Robyt JF (1986) Detection of dextransucrase and levansucrase on polyacrylamide gels by the periodic acid-Schiff stain: staining artifacts and their prevention. Anal Biochem 156:357–363
- Monchois V, Remaud-Simeon M, Monsan P, Willemot RM (1998) Cloning and sequencing of an extracellular dextransucrase (DSR-B) from *Leuconostoc mesenteroides* NRRL B1299-synthesizing only α(1–6) glucan. FEMS Microbiol Lett 159:307–315
- 24. Mooser G (1992) Glycosidases and glycosyltransferases. Enzymes 20:187–221
- 25. Moulis C, Arcache A, Escalier PC, Rinaudo M, Bouchu A, Monsan P, Remaud-Simeon M, Potocki-Veronese G (2006) High-level production and purification of a fully active recombinant dextransucrase from *Leuconostoc mesenteroides* NRRL B-512F. FEMS Microbiol Lett 261:203–210
- Moulis C, Joucla G, Harrison D, Fabre E, Potocki-Veronese G, Monsan P, Remaud-Simeon M (2006) Understanding the polymerization mechanism of Glycoside-Hydrolase Family 70 Glucansucrases. J Biol Chem 281:31254–31267
- Nuebauer H, Bauche A, Mollet B (2003) Molecular characterization and expression analysis of the dextransucrase DsrD of *Leuconostoc mesenteroides* Lcc4 in homologous and heterologous *Lactococcus lactis* cultures. Microbiology 149:973–982
- Olivares-Illana V, Wacher-Rodarte C, Le Borgne S, López-Munguía A (2002) Characterization of a cell-associated inulosucrase from a novel source: A *Leuconostoc citreum* strain isolated from Pozol, a fermented corn beverage of Mayan origin. J Ind Microbiol Biotechnol 28:112–117
- Olivares-Illana V, López-Munguía A, Olvera C (2003) Molecular characterization of inulosucrase from *Leuconostoc citreum*: a fructosyltransferase within a glucosyltransferase. J Bacteriol 185:3606–3612
- Olvera C, Fernández-Vázquez JL, Ledezma-Candanoza L, López-Munguía A (2007) Role of the C-terminal región of

dextransucrase from *Leuconostoc mesenteroides* IBT-PQ in cell anchoring. Microbiology 153:3994–4002

- Paul F, Lopez-Munguia A, Remaud M, Pelenc V, Monsan P (1992) Method of the production of α-1,2 oligodextrans using *Leuconostoc mesenteroides* NRRL B-1299, U.S. Patent 5, pp 141–858
- Remaud-Simeon M, Willemot RM, Sarcabal P, Potocki G, Monsan P (2000) Glucansucrases: molecular engineering and oligosaccharide synthesis. J Mol Catal B Enzym 10:117–128
- 33. Remaud-Simeon M, López-Munguía A, Pelenc V, Paul F, Monsan P (1994) Production and use of glucosyltransferase from *L. mesenteroides* NRRL B-1299 for the synthesis of oligosaccharides containing $\alpha(1-2)$ linkages. Appl Biochem Biotechnol 44:101–117
- Sambrook J, Russell DW (2001) Molecular cloning: a laboratory manual, 3rd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor
- 35. Seymour FR, Knapp RD (1980) Structural analysis of dextrans from strains of Leuconostoc and related genera that contain $3-O-\alpha$ glucosylated-D-glucopyranosyl residues at the branched points or in consecutive linear position. Carbohydr Res 81:105–129
- Seymour FR, Knapp RD, Bishop SH (1976) Determination of the structure of dextran by C-nuclear resonance spectrometry. Carbohydr Res 51:179–194
- 37. Sidebotham R (1974) Dextrans. Adv Carbohydr Chem Biochem 30:371–444
- Slodki ME, England RE, Plattner RD, Dick WE (1986) Methylation analyses of NRRL dextrans by capillary gas-liquid chromatography. Carbohydr Res 156:199–206
- Smith EE (1970) Biosynthetic relation between the soluble and insoluble dextrans produced by *Leuconostoc mesenteroides* NRRL B-1299. FEBS Lett 12:33–37
- 40. Soetaert W, Schwengers D, Bucholz K and Vandamme EJ (1995) A wide range of carbohydrate modifications by a single microorganism: *Leuconostoc mesenteroides*. In: Petersen SB, Svensson B, Pederson S (eds) Carbohydrate bioengineering, vol 10. Elsevier, Amsterdam, pp 351–358
- Sumner J, Howell S (1935) A method for determination of invertase activity. J Biol Chem 108:51–54
- van Hijum SAFT, Kralj S, Ozimek LK, Dijkhuizen L, van Deel-Schutten IGH (2006) Structure-function relationships of glucansucrase and fructansucrase enzymes from lactic acid bacteria. MMBR 70:157–176
- Wilke-Douglas M, Perchorowicz JT, Houck CM, Thomas BR (1989) Methods and compositions for altering physical characteristics of fruit and fruit products, PCT Patent WO 89/12386
- 44. Yalin Y, Jin L, Jianhua W, Da T, Zigang T (2008) Expression and characterization of dextransucrase gene *dsrX* from *Leuconostoc mesenteroides* in *Escherichia coli*. J Biotechnol 133:505–512
- Zahnley JC, Smith MR (1995) Insoluble glucan formation by *Leuconostoc mesenteroides* NRRL B-1355. Appl Environ Microbiol 61:1120–1123
- 46. Zhang H, Hu Y, Zhu C, Zhu B, Wang Y (2008) Cloning, sequencing and expression of a dextransucrase gene (*dexYG*) from *Leuconostoc mesenteroides*. Biotechnol Lett 30:1441–1446